

**OPTIMIZATION OF AN ECOLOGICAL ANALYTICAL PROCEDURE FOR
METABOLIC PROFILING *Theobroma grandiflorum* AND *Theobroma cacao***

Maria Gabriela de Albuquerque Santiago^{1*}, Danili Teixeira Piedade de Oliveira, Lucas Gomes de Brito¹, Leonardo de Oliveira Sartori¹, Martin Kássio Leme da Silva¹, Cristiano Soleo de Funari¹

m.santiago@unesp.br

1-GreenBiotech Network, DBB, UNESP, Av. Universitária, 3780, Botucatu, SP, Brazil.

The *Theobroma* spp. is composed of a group of fruit trees native to the Amazon with great economic and cultural relevance. *T. cacao* L. (cocoa) stands out as it is widely cultivated in Brazil and used in the food, cosmetic, and pharmaceutical industries, followed by *T. grandiflorum* (cupuaçu)^[1]. This work aimed to develop a highly efficient and green analytical procedure for analyzing parts of these species from a multivariate approach. The separation by UHPLC-DAD/UV-MS was optimized from a four-factor Doehlert design, while the extraction was from a two-factor central rotational compound design from a mixture of cupuaçu parts (leaf, husk, seed, and pulp). An optimal separation ($R^2 = 0.85$) was achieved with 5% of 50% MeOH in 20 min, using 0.2% HCOOH in the mobile phase, which resulted in 80.5 ± 2.4 peaks at $\lambda = 280$ nm. Then, an optimal extraction ($R^2 = 0.80$) was achieved using dynamic maceration with 30% ethanol for 60 min, resulting in 88.8 ± 2.8 peaks at $\lambda = 280$ nm. The full optimized condition, from sample preparation to separation, was applied to each part of the cupuaçu separately. Leaves had the highest number of peaks (85.0 ± 0.0), followed by husks (80.5 ± 0.7), seeds (65.5 ± 2.1) and pulp (42.0 ± 2.8). For comparison, the developed method was also satisfactorily applied to different parts of cocoa, resulting in 83.0 ± 2.8 , 59.5 ± 2.1 and 70.0 ± 1.4 in leaves, husks and seeds, respectively. The adopted multivariate approach led to a high level of chemical information for individual parts of both cupuaçu and cocoa, while employing only recommended solvents^[2]. This globally optimized analytical procedure will be applied for compound annotation using UHPLC-QToF-MS/MS. The authors would like to thank CNPq (131186/2024-8 and 03675/2021-7) and CAPES (88887.172509/2025-00).

Keywords: Green natural products chemistry, design of experiments, metabolomics, green analytical chemistry

[1] Mar, J. M. et al. *Theobroma* Spp.: A Review of Its Chemical and Innovation Potential for the Food Industry. *Food Chem. Adv.* **4**, 100683 (2024)

[2] Funari, C. S. et al. Reaction of the Phytochemistry Community to Green Chemistry: Insights Obtained Since 1990. *J. Nat. Prod.* **86**, 440 (2023)

